Crystal Structures of $\mathbf{M}_{\mathbf{2}} \mathrm{FeO}_{\mathbf{4}}(\mathbf{M}=\mathbf{K}, \mathbf{R b}, \mathbf{C s})$

R. J. AUDETTE and J. W. QUAIL
Department of Chemistry and Chemical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
AND
W. H. BLACK and B. E. ROBERTSON
Division of Natural Sciences and Mathematics, University of Saskatchewan, Regina, Saskatchewan, Canada

Received October 6, 1972

Abstract

The crystal structure of $\mathrm{K}_{2} \mathrm{FeO}_{4}$, which is isomorphous with $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{MnO}_{4}$ and $\mathrm{K}_{2} \mathrm{CrO}_{4}$, has been determined in detail. In addition, $\mathrm{Rb}_{2} \mathrm{FeO}_{4}$ and $\mathrm{Cs}_{2} \mathrm{FeO}_{4}$ are shown to be of the same structural type. Crystals of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ are orthorhombic, space group Pnma, $a=7.694(5), b=5.858(7), c=10.335(7)$ with $Z=4$. The integrated intensities of 1174 independent reflections were measured with an automated diffractometer and refined to a weighted least-squares residue of 0.046 . The average tetrahedral [$\mathrm{Fe}-\mathrm{O}$] bond length, corrected for libration effects, is $1.656(6) \AA$ which is equal within experimental error to values observed for $[\mathrm{Cr}-\mathrm{O}]$ and $[\mathrm{Mn}-\mathrm{O}]$ tetrahedral bonds.

Introduction

The isomorphism of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ with $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{CrO}_{4}$ has previously been reported (1-4). Some time ago, Krebs (2) reported the ferrate (VI) ion to be tetrahedral and of nearly the same dimensions (within 1%) as the chromate (VI) ion, but gave no quantitative data. However, the structural parameters for chromate (VI) ions available at that time do not appear to be reliable. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$ was first investigated by Bujor $(5,6)$ but both Gatehouse and Leverett (7) and Stephens and Cruickshank (8) have recently demonstrated that this structure determination is erroneous and that $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$ is of the $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ structural type. Also, the original lengths given by Zachariasen and Ziegler (9) for the [$\mathrm{Cr}-\mathrm{O}$] bonds in $\mathrm{K}_{2} \mathrm{CrO}_{4}(1.60 \AA)$ are much shorter that the average value determined more recently by McGinnety ($1.643 \AA$) (10) or the values of $1.68 \AA$ reported for $\mathrm{Tl}_{2} \mathrm{CrO}_{4}$ by Carter and Margulis (11).

A comparison of the accurate structural geometry of FeO_{4}^{2-} tetrahedra with the geometry of CrO_{4}^{2-} and MnO_{4}^{2-} tetrahedra, which have also been studied in detail $(8,10,15)$, allows an examination of the effects of the occupancy of
the $3 d$ orbitals on bonding to ions in the (VI) oxidation state. We have therefore undertaken a detailed structural investigation of $\mathrm{K}_{2} \mathrm{FeO}_{4}$.

Experimental

Single Crystal Data

Samples of $\mathrm{K}_{2} \mathrm{FeO}_{4}, \mathrm{Rb}_{2} \mathrm{FeO}_{4}$ and $\mathrm{Cs}_{2} \mathrm{FeO}_{4}$ were prepared as described by Audette and Quail (4). The ferrate (VI) salts always precipitated as fine powders except in one preparation of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ when crystals up to 0.5 mm in length were obtained. A sample with dimensions $0.05 \times 0.05 \times 0.40 \mathrm{~mm}$ was selected and placed in a Lindemann glass capillary and the ends of the capillary were sealed. After 24 hr it was observed that the sample had adhered to the wall of the capillary, presumably by reacting with the residual moisture in the capillary. The sample was examined by film techniques and the systematic extinctions ($0 k 1, k+l=2 n+1 ; h k 0$, $h=2 n+1$) and the Laue symmetry confirmed the space group as Pnma. The sample was mounted on a Picker FACS-I automatic diffractometer and the MoK α diffraction peaks of 17
reflections, with positive and negative 2θ values ranging between 24° and 40° from the zero 2θ setting, were centered in the receiving aperature. At these 2θ values, the $M o K \alpha_{1}$ and $M o K \alpha_{2}$ peaks were well resolved. The positions of these reflections were used with the program PICK2 written by W.C. Hamilton to find the least-square values of the lattice constants and orientation parameters of the crystal. The lattice constants are given below with estimated errors calculated as three times the estimated standard deviations given by the least-squares procedure. All estimated errors in this work are calculated in this manner in order to account for the effects of systematic errors in the initial data.

Crystal Data for $\mathrm{K}_{\mathbf{2}} \mathrm{FeO}_{\mathbf{4}}$

$$
\begin{array}{ll}
a=7.694(5) \AA & \text { Space group Pnma } \\
b=5.858(7) \AA & V=465.8 \AA^{3} \\
c=10.335(7) \AA & F(000)=380 e \\
\lambda\left(M o K \alpha \alpha_{1}\right)=0.70926 \AA & T=19^{\circ} \mathrm{C} \\
\mu(\mathrm{Mo} K \alpha)=50 \mathrm{~cm}^{-1} & Z=4
\end{array}
$$

The integrated intensities of 1174 independent reflections were measured between 3.5° and 75° in 2θ using Mo $K \alpha$ radiation and a $\theta-2 \theta$ scan mode. A highly oriented graphite monochromator was used with a take-off angle of $2.0^{\circ} ; 40 \mathrm{sec}$ background counts were collected at each limit of the scan. The scan base width was set at 1.5° at 0° in 2θ and compensation for spectral dispersion of the incident beam was added. The scan rate was $\frac{1}{2}{ }^{\circ} \min ^{-1}$. The intensities of three standard reflections were monitored after every 50 reflections and did not give any indication of crystal degradation.

Structure Analysis

The data were reduced to observed structure factors by standard procedures. The Lp factor used here is

$$
\left(\cos ^{2} 2 \theta m+\cos ^{2} 2 \theta s\right) /(2 \sin 2 \theta s)
$$

where θm is the monochromator Bragg angle and θs is the Bragg angle of the sample. The experimental conditions used during data collection allowed a variation in the X-ray path length within the crystal from 0.05 to 0.07 mm . The data were therefore not corrected for the effects of absorption. The standard deviations, $\sigma(F)$, of the observed reflections were calculated as $0.25+$
$0.0025|F|+\sigma^{\prime}$, where σ^{\prime} is determined from the counting statistics of the background and integrated peak counts. These coefficients were chosen such that the average contribution of σ, the constant term and the term proportional to $|F|$ to the total σ^{\prime} were roughly equal. The scattering factors were calculated from the coefficients given by Cromer and Mann for K^{+}, Fe^{3+} and O^{2-} ions (12). The anomalous dispersion corrections, Δf^{\prime} and $\Delta f^{\prime \prime}$ as given by Cromer (13) were applied to the scattering factors of the K and Fe atoms. The structure factors of the reflections which were below the background level were set at zero and the value of σ was set at 10.0. All of the data were used with the Busing, Martin and Levy full matrix least-squares program ORFLS (14), and starting variables taken from the coordinates reported for $\mathrm{K}_{2} \mathrm{MnO}_{4}$ by Palenik (15). The coordinates of the atoms and individual anisotropic temperature factors were varied to obtain a final weighted residue R_{ω}, defined by
$R_{\omega}=\left[\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma \omega\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2} ; \quad \omega=\sigma(F)^{-2}$
of 0.046 and a traditional R factor of 0.088 .* A weighting scheme based on the assumption that the average value of $\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right|$ in a range of $\left|F_{\mathrm{o}}\right|$ is a good approximation to $\sigma(F)$ was tried but slightly higher least-squares estimated standard deviations were obtained. A few strong reflections, two of which were of the type $0 k 0$, appeared to be subject to extinction and were not included in the refinement. Also the other $0 k 0$ reflections showed low values of $\left|F_{\mathrm{o}}\right|$, although they were not sufficiently intense that the discrepancy between $\left|F_{\mathrm{o}}\right|$ and $\left|F_{\mathrm{c}}\right|$ could be explained on the basis of extinction. The b axis was collinear with the phi axis of rotation during data collective and these reflections may have been affected by Renninger scattering. These reflections were also deleted from the refinement. The parameters based on the calculated $\sigma(F)$ were accepted as final and are reported in Table I. The interatomic distances and bond angles are given in Table II. The lengths of the $[\mathrm{Fe}-\mathrm{O}]$ bonds have been corrected

[^0]TABLE I
Positional and Thermal Parameters for $\mathrm{K}_{2} \mathrm{FeO}_{4}{ }^{a}$

Atom	x / a		y / b		z / c	
K(1)	0.6629(4)		1/4		0.4104(4)	
K(2)	-0.0148(4)		1/4		-0.3032(3)	
Fe	0.2311(3)		1/4		0.4214(2)	
$\mathrm{O}(1)$	0.0193(14)		1/4		0.4143(13)	
$\mathrm{O}(2)$	0.2980(15)		1/4		0.5720(11)	
O(3)	$0.3086(10)$		$0.0210(14)$		0.3492(8)	
Atom	$U_{11}{ }^{\text {b }}$	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
K(1)	20(1) ${ }^{\text {c }}$	26(2)	32(2)	0	-2(1)	0
K(2)	18(1)	24(2)	21(1)	0	1(1)	0
Fe	13(1)	16(1)	16(1)	0	-1(1)	0
$\mathrm{O}(1)$	9(4)	58(9)	46(8)	0	-5(5)	0
O(2)	28(4)	33(6)	22(5)	0	-5(5)	0
O(3)	32(4)	23(4)	40(5)	4(4)	9(4)	-9(4)

${ }^{a}$ The numbers in parentheses are estimated errors ($3 \times$ e.s.d's).
${ }^{b}$ The temperature factor expression is $\exp \left[-2 \pi^{2}\left(h^{2} b_{1}{ }^{2} U_{11}+\cdots+\right.\right.$ $\left.\left.2 h k b_{1} b_{2} U_{12}+\cdots\right)\right]$.
${ }^{c}$ The $U_{i j}$ are multiplied by 10^{3}.
for libration using the method of Schomaker and Trueblood (16). The FeO_{4}^{2-} tetrahedron was assumed to be a rigid body and the center of gravity of the group was assumed to have the coordinates of the iron atom. Bond lengths are also given in Table II, with libration corrections applied.

Powder Diffraction Data

Powder data were obtained using a General Electric XRD-5D/F recording diffractometer, with a flat sample holder mounted on a SPG spectrogoniometer and a No. 2 SPG counter tube and detector system. A CA-8L high intensity iron radiation X-ray tube was employed with a manganese oxide filter to remove the K_{θ} radiation.

Samples of $\mathrm{Rb}_{2} \mathrm{FeO}_{4}$ and $\mathrm{Cs}_{2} \mathrm{FeO}_{4}$ were prepared by grinding the compounds and suspending the fine powder in a Nujol mull on a glass slide. The system was calibrated using a quartz sample. The 2θ values for the diffraction lines were recorded directly from the diffractometer tracing obtained. The relative intensities of the various diffraction lines for $\mathrm{Rb}_{2} \mathrm{FeO}_{4}$ and $\mathrm{Cs}_{2} \mathrm{FeO}_{4}$ were measured using an Otis planimeter. For $\mathrm{K}_{2} \mathrm{FeO}_{4}$ the fine powder was packed into a bakelite sample holder to give a flat sample of
depth 0.20 mm . To minimize preferred orientations, the surface of the sample was corregated using a serrated packer (17,18). In order to obtain background intensities for the sample, fifteen 2θ angles were chosen where no diffraction lines occurred and a graph of average background versus 2θ was plotted.

After the scaler was set at zero, the spectrogoniometer and the scaler unit were then started simultaneously and the integrated intensity of the line was accumulated. The scaler unit automatically rezeroed itself, reversed direction of the scan on the spectrogoniometer unit and recounted the peak. Each peak was counted ten times. Background counts were subtracted to obtain the average relative intensities of the diffraction lines. Where two or more diffraction lines overlapped, the total relative intensity was first obtained as above. A graph of counts per unit time versus 2θ was constructed by making counts at intervals of 0.03° in 2θ. The overlapping peaks were separated into their components assuming Gaussian line shapes (19). The ratio of areas was scaled to the total intensity of that group of peaks.

The d spacings and normalized line intensities of all three compounds were calculated using the program POWDER written by D. K. Smith (20),

TABLE II
Interatomic Distances and Bond Angles for $\mathbf{K}_{2} \mathrm{FeO}_{4}$

(a) Interatomic distances (\AA)		
	Uncorrected	Corrected for libration
$\mathrm{Fe}-\mathrm{O}(1)$	$1.631(10)^{a}$	1.646
$\mathrm{Fe}-\mathrm{O}(2)$	$1.639(1)$	1.655
$\mathrm{Fe}-\mathrm{O}(3)$	$1.647(8)$	1.662
$\mathrm{O}(1)-\mathrm{O}(2)$	$2.692(16)$	
$\mathrm{O}(1)-\mathrm{O}(3)$	$2.684(12)$	
$\mathrm{O}(2)-\mathrm{O}(3)$	$2.666(13)$	
$\mathrm{O}(3)-\mathrm{O}\left(3^{\prime}\right)$	$2.683(12)$	

[$\mathrm{K}-\mathrm{O}$] contacts shorter than $3.5 \AA$
Contact distances (\AA) Number of contacts

$\mathrm{K}(1)-\mathrm{O}(1)$	$2.742(10)$	1
$\mathrm{~K}(1)-\mathrm{O}(2)$	$2.950(2)$	2
$\mathrm{~K}(1)-\mathrm{O}(3)$	$2.957(9)$	2
$\mathrm{~K}(1)-\mathrm{O}\left(3^{\prime}\right)$	$3.103(9)$	2
$\mathrm{~K}(1)-\mathrm{O}\left(3^{\prime}\right)$	$3.202(9)$	2
$\mathrm{~K}(1)-\mathrm{O}\left(2^{\prime}\right)$	$3.267(12)$	1
$\mathrm{~K}(2)-\mathrm{O}(2)$	$2.731(12)$	1
$\mathrm{~K}(2)-\mathrm{O}(3)$	$2.742(9)$	2
$\mathrm{~K}(2)-\mathrm{O}\left(2^{\prime}\right)$	$2.790(12)$	1
$\mathrm{~K}(2)-\mathrm{O}\left(3^{\prime}\right)$	$2.803(9)$	2
$\mathrm{~K}(2)-\mathrm{O}(1)$	$2.931(14)$	1
$\mathrm{~K}(2)-\mathrm{O}\left(1^{\prime}\right)$	$3.147(5)$	2
(b) Bond angles (in degrees)	111.1^{b}	
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(2)$	109.8	
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(3)$	108.4	
$\mathrm{O}(2)-\mathrm{Fe}-\mathrm{O}(3)$	109.4	
$\mathrm{O}(3)-\mathrm{Fe}-\mathrm{O}\left(3^{\prime}\right)$		

${ }^{a}$ Estimated errors are based on the errors given in Table I.
${ }^{\circ}$ The estimated errors in the bond angles are $c a .0 .7^{\circ}$.
and are reported in Table III. The atomic coordinates used to calculate $I_{\text {cal }}$ in the case of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ were taken from the single crystal analysis reported here. However, the values for the others were obtained by fitting $I_{\text {cal }}$ to $I_{\text {obs }}$. Because of the limited data available, the accuracy of these coordinates is low (21) and we, therefore, do not report the molecular geometry obtained from them. The lattice constants obtained by fitting the observed and calculated d spacings are given in Table IV. The estimated errors are three times the e.s.d.'s given by the least-squares procedure. The values of a and b determined from the single crystal and the powder in the case of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ do not differ significantly
but the value of c determined from the powder is $0.025 \AA$ longer than that obtained from the single crystal. This discrepancy may be spurious or it may indicate some differences between the crystal and powder samples.

Discussion

The data in Table III clearly shows that $\mathrm{M}_{2} \mathrm{FeO}_{4}(\mathrm{M}=\mathrm{K}, \mathrm{Rb}$ and Cs$)$ are isomorphous and the single crystal parameters demonstrate that their structure is the $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ type. The coordination polyhedra and contact distances of the K^{+}polyhedra are similar to those reported by Palenik (15) for $\mathrm{K}_{2} \mathrm{MnO}_{4}$. The distortions of the

TABLE III
Observed and Calculated X-Ray Diftraction Patterns of $\mathbf{K}_{\mathbf{2}} \mathrm{FeO}_{\mathbf{4}}, \mathrm{Rb}_{\mathbf{2}} \mathrm{FeO}_{4}$ and $\mathrm{Cs}_{2} \mathrm{FeO}_{4}$

$\mathrm{K}_{2} \mathrm{FeO}_{4}$					$\mathrm{Rb}_{2} \mathrm{FeO}_{4}$					$\mathrm{Cs}_{2} \mathrm{FeO}_{4}$				
$h k l$	$d_{\text {obs }}$	$d_{\text {cal }}$	$I_{\text {obs }}$	$I_{\text {cal }}{ }^{\text {a }}$	$h k l$	$d_{\text {obs }}$	$d_{\text {cal }}$	$I_{\text {obs }}$	$I_{\text {cal }}{ }^{\text {b }}$	$h \mathrm{kl}$	$d_{\text {obs }}$	$d_{\text {cal }}$	$I_{\text {obs }}$	$I_{\text {cal }}{ }^{\text {c }}$
101	-	6.183	-	0.8	101	-	6.421	-	2	101	-	6.721	-	0
002	5.169	5.180	11.3	9.3	002	-	5.333	-	1	002	-	5.564	-	1
011	5.095	5.103	4.9	6.5	011	-	5.264	-	0	011	-	5.475	-	2
102	4.309	4.299	$30.2^{\text {d }}$	28.0	102	-	4.444	-	1	102	--	4.644	-	2
111	4.271	4.254	$47.6^{\text {d }}$	42.3	111	-	4.404	-	0	111	-	4.592		3
200	3.8597	3.8525	20.4	24.1	200	4.029	4.020	7	6	200		4.217		0
201	3.6247	3.6109	5.0	5.1	201	3.7671	3.7617	19	12	201	3.9502	3.9433	24	21
112	3.4688	3.4668	13.5	7.3	112	3.5897	3.5820	46	44	112	3.7426	3.7359	64	62
210	3.2266	3.2196	11.2	9.9	210	3.3503	3.3486	20	21	210	3.5089	3.5025	20	22
103	3.1558	3.1513	6.0	3.9	103	3.2556	3.2514	19	14	103	3.3986	3.3952	18	11
202	3.1006	3.0913	$28.6{ }^{4}$	31.0	202	3.2123	3.2100	48	34	202	3.3641	3.3609	36	34
211	3.0834	3.0746	$54.8{ }^{\text {d }}$	45.4	211	3.2000	3.1948	84	86	211	3.3475	3.3409	95	92
013	2.9791	2.9756	100.0	100.0	013	3.0696	3.0653	100	100	013	3.1965	3.1948	100	100
020	2.9381	2.9315	58.7	64.0	020	3.0267	3.0260	55	77	020	3.1498	3.1445	70	72
113	2.7815	2.7758	1.3	1.1	113	2.8666	2.8642	7	3	113	2.9920	2.9876	2	6
212	2.7417	2.7345	7.1	5.4	212	2.8383	2.8358	12	11	212	2.9671	2.9640	10	11
121	2.6549	2.6488	2.9	2.2	121	2.7404	2.7372	4	2	121	-	2.8482	-	0
004	2.5914	2.5900	$17.5{ }^{\text {d }}$	13.0	004	2.6667	2.6660		11	2031	2.7841	2.7850	34	17
203	2.5758	2.5915	$17.5{ }^{\text {d }}$	11.5	$203)$	2.6667	2.6630		19	004	2.7841	2.7815	34	8
022	2.5550	2.5513	8.7	8.7	022	2.6319	2.6318	3	3	022	2.7391	2.7375	5	0
301	2.4965	2.4929	21.2	19.8	301	2.6005	2.5992	30	29	301	2.7278	2.7257	37	26
104	2.4539	2.4550	1.0	0.2	104	2.5323	2.5307	6	5	104	2.6400	2.6418	14	4
122	2.4196	2.4220	4.6	1.6	122	2.5006	2.5012	11	11	122	2.6038	2.6038	13	14
213	2.3584	2.3549	5.3	3.5	213	-	2.4375	-	3	213	-	2.5465	-	0
220	-	2.3329	-	0.5	220	-	2.4176	-	1	220	-	2.5208	-	2
302	2.3050	2.3010	7.1	5.4	302	2.3966	2.3946	3	2	302	-	2.5092	-	1
311	2.2981	2.2941	15.1	16.2	311	2.3886	2.3883	7	9	311	2.5028	2.5009	6	8
221	2.2750	2.2759	17.4	12.8	221	2.3566	2.3578	13	18	221	2.4588	2.4585	16	20
114	2.2650	2.2645	20.5	9.5	114	2.3349	2.3348	13	18	114	2.4356	2.4356	17	16
204	2.1521	2.1494	$9.5{ }^{\text {d }}$	7.3	312	-	2.2266	-	0	312	-	2.3305	-	1
123	2.1477	2.1464	$9.5{ }^{\text {d }}$	6.1	204	2.2221	2.2220	9	6	204	2.3238	2.3221	8	8
312	-	2.1420	-	0.0	123	2.2169	2.2151	8	16	123	2.3081	2.3070	16	11
222	2.1286	2.1271	27.9	20.9	222	2.2017	2.2019	23	35	222	2.2972	2.2961	27	31
303	2.0616	2.0609	7.9	7.6	303	2.1396	2.1400	9	12	303	2.2398	2.2405	14	13
214	2.0187	2.0181	3.1	2.0	214	2.0856	2.0858	4	6	214	2.1762	2.1783	5	12
105	2.0000	2.0009	5.2	3.3	105	2.0619	2.0617	15	10	105	2.1502	2.1518	26	16
015	1.9491	1.9536	3.7	3.2	313	-	2.0176	-	0	313	-	2.1105	-	1
313	-	1.9443	-	0.0	015	2.0100	2.0117	8	6	400	-	2.1085	-	4
024	1.9396	1.9410	0.9	1.2	400)	2.0100	2.0100	8	7	015	-	2.0979	-	1
223	1.9325	1.9331	14.3	9.0	024	1.9991	2.0005	11	2	223	20846	2.0849	15	16
400	1.9254	1.9263	5.9	6.5	2231	1.9991	1.9991	11	18	024	2.0846	2.0835	15	2
031	-	1.9205	-	0.0	031	-	1.9822	-	0	401	-	2.0716	-	0
321	1.8979	1.8991	$4.8{ }^{\text {d }}$	2.4	401	-	1.9752	-	0	031		2.0601	13	0
401	18940	1.8938	-	0.0	321	1.9708	1.9717	10	14	321	2.0599	2.0596	13	15
115	1.8940	1.8937	$1.4{ }^{\text {d }}$	2.0	115	-	1.9516	-	0	115	-	2.0359	-	2
124	1.8832	1.8822	2.6	1.9	124	-	1.9413	-	0	124	-	2.0227	-	0
131	1.8636	1.8635	1.7	2.1	131	1.9240	1.9246	3	1	131	-	2.0013	-	1
410	1.8290	1.8300	$4.0^{\text {d }}$	3.3	410	1.9063	1.9076	7	8	410	1.9987	1.9991	10	8
205	18239	1.8248	$3.7{ }^{\text {d }}$	2.5	304	-	1.8902	-	1	304	-	1.9774	-	1
304)	1.8239	1.8237	$2.2{ }^{\text {d }}$	2.5	205	1.8852	1.8842	3	3	402	-	1.9717	-	3

Table III-continued

	$\mathrm{K}_{\mathbf{2}} \mathrm{FeO}_{4}$				$\mathrm{Rb}_{2} \mathrm{FeO}_{4}$					$\mathrm{Cs}_{2} \mathrm{FeO}_{4}$				
hkl	$d_{\text {obs }}$	$d_{\text {cat }}$	$I_{\text {obs }}$	$I_{\mathrm{ca1} 1}{ }^{\text {a }}$	hkl	$d_{\text {ubs }}$	$d_{\text {cal }}$	$I_{\text {ubs }}$	$I_{\text {cal }}{ }^{\text {b }}$	hkl	$d_{\text {ubs }}$	$d_{\text {cal }}$	$I_{\text {ubs }}$	$I_{\text {cu1 }}{ }^{\text {c }}$
322	-	1.8100	-	0.8	402	1.8810	1.8808	2	2	205	1.9678	1.9682	14	1
402	-	1.8055	-	0.0	322	18722	1.8778	5	0	411	1.9678	1.9676	14	14
411	-	1.8021	-	0.5	$411)$	1.8722	1.8778	5	7	322	-	1.9613	-	0
132	-	1.7791	-	0.6	132	-	1.8369	-	7	132	-	1.9107	-	9
230		1.7429	$3.0{ }^{\text {d }}$	2.0	314	18036	1.8042	12	20	314	1.8857	1.8863	21	20
215	1.7426	1.7424	$0.3{ }^{\text {d }}$	0.8	230	1.8036	1.8030	12	4	412	-	1.8814	-	0
314		1.7414	$5.6{ }^{\text {d }}$	3.0	215	-	1.7990	-	0	215	-	1.8783	-	0
224	-	1.7334	-	0.9	412	-	1.7961	-	0	230	-	1.8772	-	4
006	1.7260	1.7267	$4.0{ }^{\text {d }}$	3.5	224	-	1.7910	-	1	224	-	1.8680	-	3
412	1.7251	1.7255	$0.8{ }^{\text {d }}$	0.1	231	7775	1.7778	13	15	006	1.8555	1.8545	2	2
213	1.7193	1.7188	$7.1{ }^{\text {d }}$	4.7	006	775	1.7775	13	2	231	1.8510	1.8510	8	15
033	1.7003	1.7009	13.9	12.6	033	1.7548	1.7545	6	18	403	1.8331	1.8330	4	6
										033	1.8249	1.8250	16	18

${ }^{a}$ Values were calculated assuming the atom positions found from the single crystal analysis.
${ }^{b}$ Values are calculated assuming the following atom positions: $\mathrm{Rb}(1): 0.667, \frac{1}{4}, 0.411 ; \mathrm{Rb}(2):-0.011, \frac{1}{4},-0.309$; $\mathrm{Fe}: 0.226, \frac{1}{4}, 0.421 ; O(1): 0.027$, 九, $0.421 ; O(2): 0.292$, d, $0.562 ; O(3): 0.292,0.034,0.346$.
${ }^{c}$ Values are calculated assuming the following atom positions; $\mathrm{Cs}(1): 0.660, \frac{1}{4}, 0.402 ; \mathrm{Cs}(2):-0.015, \frac{1}{4},-0.301$; $\mathrm{Fe}: 0.226, \frac{1}{4}, 0.421 ; O(1): 0.037, \frac{1}{4}, 0.421 ; O(2): 0.289, \frac{1}{4}, 0.557 ; O(3): 0.289,0.042,0.349$.
${ }^{d}$ Overlapping reflections. Relative Intensity of each reflection was determined from a Gaussian analysis of the overlapping reflections.
FeO_{4}^{2-} tetrahedron from regularity are only marginally significant but appear to be related to the [$\mathrm{K}-\mathrm{O}$] contacts. As is shown in Fig. 1, the atoms $\mathrm{Fe}, \mathrm{O}(1)$ and $\mathrm{K}(1)$ are colinear and the distances $[\mathrm{Fe}-\mathrm{O}(1)]$ and $[\mathrm{K}(1)-\mathrm{O}(1)]$ are the shortest $[\mathrm{Fe}-\mathrm{O}]$ and second shortest $[\mathrm{K}-\mathrm{O}]$ distance, respectively. The smallest and largest $\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ angles indicate that the atom $\mathrm{O}(2)$ is located at a position slightly further from the atom $K(2)$ than would be the case for an ideal

TABLE IV
Powder Diffraction Crystal Data

$\mathrm{K}_{2} \mathrm{FeO}_{4}$	$\mathrm{Rb}_{2} \mathrm{FeO}_{4}$	$\mathrm{Cs}_{2} \mathrm{FeO}_{4}$
$a=7.705(6) \AA$	$8.040(6) \AA$	$8.434(6) \AA$
$b=5.863(6) \AA$	$6.052(3) \AA$	$6.289(3) \AA$
$c=10.360(9) \AA$	$10.665(6) \AA$	$11.127(6) \AA$
$V=468.01 \AA$	$518.94 \AA$	$590.10 \AA$
$\rho \exp =2.68 \mathrm{~g} \mathrm{~cm}^{-3}$	$3.57 \mathrm{~g} \mathrm{~cm}^{-3}$	$4.14 \mathrm{~g} \mathrm{~cm}^{-3}$
ρ calc $=2.81 \mathrm{~g} \mathrm{~cm}^{-3}$	$3.72 \mathrm{~g} \mathrm{~cm}^{-3}$	$4.36 \mathrm{~g} \mathrm{~cm}^{-3}$
$F . W .=198.05$	290.79	385.65
$\lambda(\mathrm{Fe} K \alpha)=1.9373 \AA$	$1.9373 \AA$	$1.9373 \AA$
$T=20^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$

tetrahedron. The distance $[\mathrm{K}(2)-\mathrm{O}(2)]$ is the shortest [$\mathrm{K}-\mathrm{O}$] distance in the structure.

The libration corrections increase the average [$\mathrm{Fe}-\mathrm{O}$] bond length by $0.015 \AA$. This compares with similar values of $0.013 \AA$ for both $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$ (8) and $\mathrm{K}_{2} \mathrm{MnO}_{4}$ (15). The average [$\mathrm{Cr}-\mathrm{O}$] bond length in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$, corrected for libration effects, is $1.658(7) \AA(8)$ and in $\mathrm{K}_{2} \mathrm{CrO}_{4}$, using riding motion corrections the average

Fig. 1. The structure of $\mathrm{K}_{2} \mathrm{FeO}_{4}$ projected along the [010] axis, showing the shortest [K-O] contacts. The large circles are K^{+}ions at $y=\frac{1}{4}$. The smaller circles are K^{+}ions at $y=\frac{1}{4}$.
[$\mathrm{Cr}-\mathrm{O}$] bond length is $1.660(4) \AA(10)$. For $\mathrm{K}_{2} \mathrm{MnO}_{4}$ (15), the average [$\mathrm{Mn}-\mathrm{O}$] bond length is $1.659(8) \AA$. The average value for $[\mathrm{Fe}-\mathrm{O}]$ found here is $1.656(6) \AA$.

In a molecular orbital scheme for $\left(\mathrm{MO}_{4}\right)^{n-}$ species, only $3 d$ and $4 s$ orbitals on the metal ion are involved (22). All d orbitals on M accept electrons from the ligands and, therefore, any d electrons on M must go into orbitals with antibonding character (presumably e^{*}), decreasing the net bond order in going from chromium to iron. The weakening of the covalent bonding is consistent with the observed stretching force constants $\quad(23) . \quad\left(f_{d}\left(\mathrm{CrO}_{4}^{2-}\right)=5.48 \mathrm{mdyn} / \AA\right.$, $f_{d}\left(\mathrm{MnO}_{4}^{2-}\right)=4.88 \mathrm{mdyn} / \AA, \quad f_{d}\left(\mathrm{FeO}_{4}^{2-}\right)=4.73$ $\operatorname{mdyn} / \AA$) Ionic factors alone would predict a decrease in bond length in going from Cr to Fe but covalent factors apparently balance the ionic effects resulting in almost identical dimensions for the chromate, manganate and ferrate ions.

Acknowledgment

The authors thank the National Research Council of Canada for financial support in the form of operating grants and the Government of Saskatchewan for Provincial Employment Program assistance to W. H. Black.

References

1. B. Helferich and K. Lang, Z. Anorg. Allgem. Chem. 263, 169 (1950).
2. H. Krebs, Z. Anorg. Allgem. Chem. 263, 175 (1950).
3. A. Carrington, D. J. E. Ingram, K. A. K. Lott, D. S. Schonland and M. R. C. Symons, Proc. Roy. Soc. A254, 101 (1960).
4. R. J. Audette and J. W. Quail, Inorg. Chem. 11, 1904 (1972).
5. D. I. Bujor, Z. Kristallogr. 78, 1 (1931).
6. D. I. Bujor, Z. Kristallogr. 165, 364 (1944).
7. B. M. Gatehouse and P. Leverett, J. Chem. Soc. (A), 12, 1857 (1969).
8. J. S. Stephens and D. W. J. Cruickshank, Acta Crystallogr. B26, 437 (1970).
9. W. H. Zachariassen and G. F. Ziegler, Z. Kristallogr. 80, 164 (1931).
10. J. A. McGinnety, Acta Crystallogr. B28, 2845 (1972).
11. R. L. Carter and T. N. Margulis, J. Solid State Chem. 5, 75 (1972).
12. D. T. Cromer and J. B. Mann, Acta Crystallogr. A24, 321 (1968).
13. D. T. Cromer, Acta Crystallogr. 18, 17 (1965).
14. W. R. Busing, K. O. Martin and H. A. Levy, "ORFLS, A Fortran Crystallographic Least-Squares Program." ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tenn. 1962.
15. G. J. Palenik, Inorg. Chem. 6, 507 (1967).
16. V. Schomaker and K. N. Trueblood, Acta Crystallogr. B24, 63 (1968).
17. T. Okamoto, M. Kimura, and K. Nakajma, J. Sci. Inst. 3 (5), 414 (1970).
18. T. Peters, Norelco Reporter 17 (2), 23 (1970).
19. L. V. Azaroff, "Elements of X-ray Crystallography." McGraw-Hill, New York, 1968.
20. D. K. Smith, "A Revised Program for Calculating X-ray Powder Diffraction Patterns." University of California, Livermore, Cal. June, 1967
21. R. J. Audette, Ph.D. thesis "Studies of the Ferrate (V1) Ion." University of Saskatchewan, Saskatoon, 1971.
22. K. Ballhausen and A. Liehr, J. Mol. Spectrosc. 2, 342 (1958).
23. F. Gonzales-Vilchez and W. P. Griffith, J. Chem. Soc. Dalton, 1416 (1972).

[^0]: * A table of observed and calculated structure amplitudes from this analysis has been deposited as Document No. NAPS-02104 with the National Auxiliary Publications Service c/o Microfiche Publications 305 East 46th Street New York, N. Y. 10017. A copy may be secured by citing the document number and by remitting $\$ 5.00$ for photocopies or $\$ 1.50$ for microfiche. Advance payment is required. Make cheque or money order payable to ASIS-NAPS.

